[Edit #1 after @mrry comment] I am using the (great & amazing) Dataset API along with tf.contrib.data.rejection_resample to set a specific distribution
Here is below a simple example to demonstrate the usage of sample_from_datasets (thanks @Agade for the idea).
import math
import tensorflow as tf
import numpy as np
def print_dataset(name, dataset):
elems = np.array([v.numpy() for v in dataset])
print("Dataset {} contains {} elements :".format(name, len(elems)))
print(elems)
def combine_datasets_balanced(dataset_smaller, size_smaller, dataset_bigger, size_bigger, batch_size):
ds_smaller_repeated = dataset_smaller.repeat(count=int(math.ceil(size_bigger / size_smaller)))
# we repeat the smaller dataset so that the 2 datasets are about the same size
balanced_dataset = tf.data.experimental.sample_from_datasets([ds_smaller_repeated, dataset_bigger], weights=[0.5, 0.5])
# each element in the resulting dataset is randomly drawn (without replacement) from dataset even with proba 0.5 or from odd with proba 0.5
balanced_dataset = balanced_dataset.take(2 * size_bigger).batch(batch_size)
return balanced_dataset
N, M = 3, 10
even = tf.data.Dataset.range(0, 2 * N, 2).repeat(count=int(math.ceil(M / N)))
odd = tf.data.Dataset.range(1, 2 * M, 2)
even_odd = combine_datasets_balanced(even, N, odd, M, 2)
print_dataset("even", even)
print_dataset("odd", odd)
print_dataset("even_odd_all", even_odd)
Output :
Dataset even contains 12 elements : # 12 = 4 x N (because of .repeat)
[0 2 4 0 2 4 0 2 4 0 2 4]
Dataset odd contains 10 elements :
[ 1 3 5 7 9 11 13 15 17 19]
Dataset even_odd contains 10 elements : # 10 = 2 x M / 2 (2xM because of .take(2 * M) and /2 because of .batch(2))
[[ 0 2]
[ 1 4]
[ 0 2]
[ 3 4]
[ 0 2]
[ 4 0]
[ 5 2]
[ 7 4]
[ 0 9]
[ 2 11]]