This question relates to those parts of the KenKen Latin Square puzzles which ask you to find all possible combinations of ncells numbers with values x such that 1 <= x &
Here is a naive, but succinct, solution using generators:
def descending(v):
"""Decide if a square contains values in descending order"""
return list(reversed(v)) == sorted(v)
def latinSquares(max_val, target_sum, n_cells):
"""Return all descending n_cells-dimensional squares,
no cell larger than max_val, sum equal to target_sum."""
possibilities = itertools.product(range(1,max_val+1),repeat=n_cells)
for square in possibilities:
if descending(square) and sum(square) == target_sum:
yield square
I could have optimized this code by directly enumerating the list of descending grids, but I find itertools.product much clearer for a first-pass solution. Finally, calling the function:
for m in latinSquares(6, 12, 4):
print m