Pandas add new columns based on splitting another column

前端 未结 3 1830
失恋的感觉
失恋的感觉 2021-01-03 04:42

I have a pandas dataframe like the following:

A              B
US,65,AMAZON   2016
US,65,EBAY     2016

My goal is to get to look like this:

3条回答
  •  无人及你
    2021-01-03 05:27

    You can use split with parameter expand=True and add one [] to left side:

    df[['country','code','com']] = df.A.str.split(',', expand=True)
    

    Then replace , to .:

    df.A = df.A.str.replace(',','.')
    
    print (df)
                  A     B country code     com
    0  US.65.AMAZON  2016      US   65  AMAZON
    1    US.65.EBAY  2016      US   65    EBAY
    

    Another solution with DataFrame constructor if there are no NaN values:

    df[['country','code','com']] = pd.DataFrame([ x.split(',') for x in df['A'].tolist() ])
    df.A = df.A.str.replace(',','.')
    print (df)
                  A     B country code     com
    0  US.65.AMAZON  2016      US   65  AMAZON
    1    US.65.EBAY  2016      US   65    EBAY
    

    Also you can use column names in constructor, but then concat is necessary:

    df1=pd.DataFrame([x.split(',') for x in df['A'].tolist()],columns= ['country','code','com'])
    df.A = df.A.str.replace(',','.')
    df = pd.concat([df, df1], axis=1)
    print (df)
                  A     B country code     com
    0  US.65.AMAZON  2016      US   65  AMAZON
    1    US.65.EBAY  2016      US   65    EBAY
    

提交回复
热议问题