An array of length n is given. Find the sum of products of elements of the sub-array.
Explanation
Array A
There is rather simple way:
Construct product of terms (1 + A[i] * x):
P = (1 + A[0] * x) * (1 + A[1] * x) * (1 + A[2] * x)...*(1 + A[n-1] * x)
If we open the brackets, then we'll get polynomial
P = 1 + B[1] * x + B[2] * x^2 + ... + B[n] * x^n
Kth coefficient, B[k], is equal to the sum of products of sets with length K - for example, B[n] = A[0]*A[1]*A[2]*..A[n-1], B[2] = A[0]*A[1] + A[0]*A[2] + ... + A[n-2]*A[n-1] and so on.
So to find sum of products of all possible sets, we have to find value of polynomial P for x = 1, then subtract 1 to remove leading 0th term. If we don't want to take into consideration single-element sets, then subtract B1 = sum of A[i].
Example:
(1+2)(1+3)(1+4) = 60
60 - 1 = 59
59 - (2 + 3 + 4) = 50 = 24 + 26 - as your example shows