Consider the following dataframe
import pandas as pd
df = pd.DataFrame({\'A\' : [1, 2, 3, 3, 4, 4, 5, 6, 7],
\'B\' : [\'a\',\'b\',\'c\',\'
Here's an alternative:
df[~((df[['A', 'B']].duplicated(keep=False)) & (df.isnull().any(axis=1)))]
# A B Col_1 Col_2
# 0 1 a NaN 2
# 1 2 b A 2
# 2 3 c A 3
# 4 4 d B 3
# 6 5 e B 4
# 7 6 f NaN 4
# 8 7 g NaN 5
This uses the bitwise "not" operator ~ to negate rows that meet the joint condition of being a duplicate row (the argument keep=False causes the method to evaluate to True for all non-unique rows) and containing at least one null value. So where the expression df[['A', 'B']].duplicated(keep=False) returns this Series:
# 0 False
# 1 False
# 2 True
# 3 True
# 4 True
# 5 True
# 6 False
# 7 False
# 8 False
...and the expression df.isnull().any(axis=1) returns this Series:
# 0 True
# 1 False
# 2 False
# 3 True
# 4 False
# 5 True
# 6 False
# 7 True
# 8 True
... we wrap both in parentheses (required by Pandas syntax whenever using multiple expressions in indexing operations), and then wrap them in parentheses again so that we can negate the entire expression (i.e. ~( ... )), like so:
~((df[['A','B']].duplicated(keep=False)) & (df.isnull().any(axis=1))) & (df['Col_2'] != 5)
# 0 True
# 1 True
# 2 True
# 3 False
# 4 True
# 5 False
# 6 True
# 7 True
# 8 False
You can build more complex conditions with further use of the logical operators & and | (the "or" operator). As with SQL, group your conditions as necessary with additional parentheses; for instance, filter based on the logic "both condition X AND condition Y are true, or condition Z is true" with df[ ( (X) & (Y) ) | (Z) ].