Is it possible to use numpy\'s linalg.matrix_power with a modulo so the elements don\'t grow larger than a certain value?
Using the implementation from Numpy:
https://github.com/numpy/numpy/blob/master/numpy/matrixlib/defmatrix.py#L98
I adapted it by adding a modulo term. HOWEVER, there is a bug, in that if an overflow occurs, no OverflowError or any other sort of exception is raised. From that point on, the solution will be wrong. There is a bug report here.
Here is the code. Use with care:
from numpy.core.numeric import concatenate, isscalar, binary_repr, identity, asanyarray, dot
from numpy.core.numerictypes import issubdtype
def matrix_power(M, n, mod_val):
# Implementation shadows numpy's matrix_power, but with modulo included
M = asanyarray(M)
if len(M.shape) != 2 or M.shape[0] != M.shape[1]:
raise ValueError("input must be a square array")
if not issubdtype(type(n), int):
raise TypeError("exponent must be an integer")
from numpy.linalg import inv
if n==0:
M = M.copy()
M[:] = identity(M.shape[0])
return M
elif n<0:
M = inv(M)
n *= -1
result = M % mod_val
if n <= 3:
for _ in range(n-1):
result = dot(result, M) % mod_val
return result
# binary decompositon to reduce the number of matrix
# multiplications for n > 3
beta = binary_repr(n)
Z, q, t = M, 0, len(beta)
while beta[t-q-1] == '0':
Z = dot(Z, Z) % mod_val
q += 1
result = Z
for k in range(q+1, t):
Z = dot(Z, Z) % mod_val
if beta[t-k-1] == '1':
result = dot(result, Z) % mod_val
return result % mod_val