Choose function to apply based on the validity of an expression

前端 未结 4 1587
自闭症患者
自闭症患者 2021-01-01 17:28

The problem is the following, in C++14:

  • Let\'s have two functions FV&& valid_f, FI&& invalid_f, and argu
4条回答
  •  难免孤独
    2021-01-01 17:45

    First, a homebrew version of C++2a's is_detected:

    #include 
    #include 
    #include 
    #include 
    
    namespace details {
      templateusing void_t=void;
      templateclass Z, class=void, class...Ts>
      struct can_apply:std::false_type{};
      templateclass Z, class...Ts>
      struct can_apply>, Ts...>:std::true_type{};
    }
    templateclass Z, class...Ts>
    using can_apply = typename details::can_apply::type;
    

    As it happens, std::result_of_t is the trait we want to test.

    template
    using can_call = can_apply< std::result_of_t, Sig >;
    

    now can_call< Some(Sig,Goes,Here) > is true_type iff the expression you want can be called.

    Now we write some compile-time if dispatch machinery.

    template
    using index_t=std::integral_constant;
    template
    constexpr index_t index_v{};
    
    constexpr inline index_t<0> dispatch_index() { return {}; }
    template =0
    >
    constexpr index_t<0> dispatch_index( B0, Bs... ) { return {}; }
    template =0
    >
    constexpr auto dispatch_index( B0, Bs... ) { 
      return index_v< 1 + dispatch_index( Bs{}...) >;
    }
    
    template
    auto dispatch( Bs... ) {
      using I = decltype(dispatch_index( Bs{}... ));
      return [](auto&&...args){
        return std::get( std::make_tuple(decltype(args)(args)..., [](auto&&...){}) );
      };
    }
    

    dispatch( SomeBools... ) returns a lambda. The first of the SomeBools which is compile-time truthy (has a ::value that evaluates to true in a boolean context) determines what the returned lambda does. Call that the dispatch index.

    It returns the dispatch_index'd argument to the next call, and an empty lambda if that is one-past-the-end of the list.

    template 
    void apply_on_validity(FV&& valid_f, FI&& invalid_f, Args&&... args)
    {
      dispatch(
        can_call{},
        can_call{}
      )(
        [&](auto&& valid_f, auto&&)->decltype(auto) {
          return decltype(valid_f)(valid_f)(std::forward(args)...);
        },
        [&](auto&&, auto&& invalid_f)->decltype(auto) {
          return decltype(invalid_f)(valid_f)(std::forward(args)...);
        }
      )(
        valid_f, invalid_f
      );
    }
    

    and done, live example.

    We could make this generic to enable nary version. First index_over:

    template
    auto index_over( std::index_sequence ){
      return [](auto&&f)->decltype(auto){
        return decltype(f)(f)( std::integral_constant{}... );
      };
    }
    template
    auto index_over(std::integral_constant ={}){
      return index_over(std::make_index_sequence{} );
    }
    

    Then auto_dispatch:

    template
    auto auto_dispatch( Fs&&... fs ) {
      auto indexer =  index_over();
      auto helper = [&](auto I)->decltype(auto){ 
        return std::get( std::forward_as_tuple( decltype(fs)(fs)... ) );
      };
      return indexer
      (
        [helper](auto...Is){
          auto fs_tuple = std::forward_as_tuple( helper(Is)... );
          return [fs_tuple](auto&&...args) {
            auto dispatcher = dispatch(can_call{}...);
            auto&& f0 = dispatcher(std::get(fs_tuple)...);
            std::forward(f0)(decltype(args)(args)...);
          };
        }
      );
    }
    

    with test code:

    auto a = [](int x){ std::cout << x << "\n"; };
    auto b = [](std::string y){ std::cout << y << "\n";  };
    struct Foo {};
    auto c = [](Foo){ std::cout << "Foo\n";  };
    int main() {
      auto_dispatch(a, c)( 7 );
      auto_dispatch(a, c)( Foo{} );
      auto_dispatch(a, b, c)( Foo{} );
      auto_dispatch(a, b, c)( "hello world" );
    }
    

    Live example

提交回复
热议问题