I currently have two numpy arrays:
X - (157, 128) - 157 sets of 128 featuresY - (157) - classifications of the feature sets
Here's an SVM usage example which does not throw an error:
import numpy
import tensorflow as tf
X = numpy.zeros([157, 128])
Y = numpy.zeros([157], dtype=numpy.int32)
example_id = numpy.array(['%d' % i for i in range(len(Y))])
x_column_name = 'x'
example_id_column_name = 'example_id'
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={x_column_name: X, example_id_column_name: example_id},
y=Y,
num_epochs=None,
shuffle=True)
svm = tf.contrib.learn.SVM(
example_id_column=example_id_column_name,
feature_columns=(tf.contrib.layers.real_valued_column(
column_name=x_column_name, dimension=128),),
l2_regularization=0.1)
svm.fit(input_fn=train_input_fn, steps=10)
Examples passed to the SVM Estimator need string IDs. You can probably substitute back infer_real_valued_columns_from_input, but you would need to pass it a dictionary so it picks up the right name for the column. In this case it's conceptually simpler to just construct the feature column yourself.