What is the best way to find the period in a repeating list?
For example:
a = {4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2}
has repeat
Please see the comments interspersed with the code on how it works.
(* True if a has period p *)
testPeriod[p_, a_] := Drop[a, p] === Drop[a, -p]
(* are all the list elements the same? *)
homogeneousQ[list_List] := Length@Tally[list] === 1
homogeneousQ[{}] := Throw[$Failed] (* yes, it's ugly to put this here ... *)
(* auxiliary for findPeriodOfFirstElement[] *)
reduce[a_] := Differences@Flatten@Position[a, First[a], {1}]
(* the first element occurs every ?th position ? *)
findPeriodOfFirstElement[a_] := Module[{nl},
nl = NestWhileList[reduce, reduce[a], ! homogeneousQ[#] &];
Fold[Total@Take[#2, #1] &, 1, Reverse[nl]]
]
(* the period must be a multiple of the period of the first element *)
period[a_] := Catch@With[{fp = findPeriodOfFirstElement[a]},
Do[
If[testPeriod[p, a], Return[p]],
{p, fp, Quotient[Length[a], 2], fp}
]
]
Please ask if findPeriodOfFirstElement[] is not clear. I did this independently (for fun!), but now I see that the principle is the same as in Verbeia's solution, except the problem pointed out by Brett is fixed.
I was testing with
b = RandomInteger[100, {1000}];
a = Flatten[{ConstantArray[b, 1000], Take[b, 27]}];
(Note the low integer values: there will be lots of repeating elements within the same period *)
EDIT: According to Leonid's comment below, another 2-3x speedup (~2.4x on my machine) is possible by using a custom position function, compiled specifically for lists of integers:
(* Leonid's reduce[] *)
myPosition = Compile[
{{lst, _Integer, 1}, {val, _Integer}},
Module[{pos = Table[0, {Length[lst]}], i = 1, ctr = 0},
For[i = 1, i <= Length[lst], i++,
If[lst[[i]] == val, pos[[++ctr]] = i]
];
Take[pos, ctr]
],
CompilationTarget -> "C", RuntimeOptions -> "Speed"
]
reduce[a_] := Differences@myPosition[a, First[a]]
Compiling testPeriod gives a further ~20% speedup in a quick test, but I believe this will depend on the input data:
Clear[testPeriod]
testPeriod =
Compile[{{p, _Integer}, {a, _Integer, 1}},
Drop[a, p] === Drop[a, -p]]