Is there any difference in performance between this
synchronized void x() {
y();
}
synchronized void y() {
}
and this
Test can be found below ( You have to guess what some methods do but nothing complicated ) :
It tests them with 100 threads each and starts counting the averages after 70% of them has completed ( as warmup ).
It prints it out once at the end.
public static final class Test {
final int iterations = 100;
final int jiterations = 1000000;
final int count = (int) (0.7 * iterations);
final AtomicInteger finishedSingle = new AtomicInteger(iterations);
final AtomicInteger finishedZynced = new AtomicInteger(iterations);
final MovingAverage.Cumulative singleCum = new MovingAverage.Cumulative();
final MovingAverage.Cumulative zyncedCum = new MovingAverage.Cumulative();
final MovingAverage singleConv = new MovingAverage.Converging(0.5);
final MovingAverage zyncedConv = new MovingAverage.Converging(0.5);
// -----------------------------------------------------------
// -----------------------------------------------------------
public static void main(String[] args) {
final Test test = new Test();
for (int i = 0; i < test.iterations; i++) {
test.benchmark(i);
}
Threads.sleep(1000000);
}
// -----------------------------------------------------------
// -----------------------------------------------------------
void benchmark(int i) {
Threads.async(()->{
long start = System.nanoTime();
for (int j = 0; j < jiterations; j++) {
a();
}
long elapsed = System.nanoTime() - start;
int v = this.finishedSingle.decrementAndGet();
if ( v <= count ) {
singleCum.add (elapsed);
singleConv.add(elapsed);
}
if ( v == 0 ) {
System.out.println(elapsed);
System.out.println("Single Cum:\t\t" + singleCum.val());
System.out.println("Single Conv:\t" + singleConv.val());
System.out.println();
}
});
Threads.async(()->{
long start = System.nanoTime();
for (int j = 0; j < jiterations; j++) {
az();
}
long elapsed = System.nanoTime() - start;
int v = this.finishedZynced.decrementAndGet();
if ( v <= count ) {
zyncedCum.add(elapsed);
zyncedConv.add(elapsed);
}
if ( v == 0 ) {
// Just to avoid the output not overlapping with the one above
Threads.sleep(500);
System.out.println();
System.out.println("Zynced Cum: \t" + zyncedCum.val());
System.out.println("Zynced Conv:\t" + zyncedConv.val());
System.out.println();
}
});
}
synchronized void a() { b(); }
void b() { c(); }
void c() { d(); }
void d() { e(); }
void e() { f(); }
void f() { g(); }
void g() { h(); }
void h() { i(); }
void i() { }
synchronized void az() { bz(); }
synchronized void bz() { cz(); }
synchronized void cz() { dz(); }
synchronized void dz() { ez(); }
synchronized void ez() { fz(); }
synchronized void fz() { gz(); }
synchronized void gz() { hz(); }
synchronized void hz() { iz(); }
synchronized void iz() {}
}
MovingAverage.Cumulative add is basically ( performed atomically ): average = (average * (n) + number) / (++n);
MovingAverage.Converging you can look up but uses another formula.
The results after a 50 second warmup:
With: jiterations -> 1000000
Zynced Cum: 3.2017985649516254E11
Zynced Conv: 8.11945143126507E10
Single Cum: 4.747368153507841E11
Single Conv: 8.277793176290959E10
That's nano seconds averages. That's really nothing and even shows that the zynced one takes less time.
With: jiterations -> original * 10 (takes much longer time)
Zynced Cum: 7.462005651190714E11
Zynced Conv: 9.03751742946726E11
Single Cum: 9.088230941676143E11
Single Conv: 9.09877020004914E11
As you can see the results show it's really not a big difference. The zynced one actually has lower average time for the last 30% completions.
With one thread each (iterations = 1) and jiterations = original * 100;
Zynced Cum: 6.9167088486E10
Zynced Conv: 6.9167088486E10
Single Cum: 6.9814404337E10
Single Conv: 6.9814404337E10
In a same thread environment ( removing Threads.async calls )
With: jiterations -> original * 10
Single Cum: 2.940499529542545E8
Single Conv: 5.0342450600964054E7
Zynced Cum: 1.1930525617915475E9
Zynced Conv: 6.672312498662484E8
The zynced one here seems to be slower. On an order of ~10. The reason for this could be due to the zynced one running after each time, who knows. No energy to try the reverse.
Last test run with:
public static final class Test {
final int iterations = 100;
final int jiterations = 10000000;
final int count = (int) (0.7 * iterations);
final AtomicInteger finishedSingle = new AtomicInteger(iterations);
final AtomicInteger finishedZynced = new AtomicInteger(iterations);
final MovingAverage.Cumulative singleCum = new MovingAverage.Cumulative();
final MovingAverage.Cumulative zyncedCum = new MovingAverage.Cumulative();
final MovingAverage singleConv = new MovingAverage.Converging(0.5);
final MovingAverage zyncedConv = new MovingAverage.Converging(0.5);
// -----------------------------------------------------------
// -----------------------------------------------------------
public static void main(String[] args) {
final Test test = new Test();
for (int i = 0; i < test.iterations; i++) {
test.benchmark(i);
}
Threads.sleep(1000000);
}
// -----------------------------------------------------------
// -----------------------------------------------------------
void benchmark(int i) {
long start = System.nanoTime();
for (int j = 0; j < jiterations; j++) {
a();
}
long elapsed = System.nanoTime() - start;
int s = this.finishedSingle.decrementAndGet();
if ( s <= count ) {
singleCum.add (elapsed);
singleConv.add(elapsed);
}
if ( s == 0 ) {
System.out.println(elapsed);
System.out.println("Single Cum:\t\t" + singleCum.val());
System.out.println("Single Conv:\t" + singleConv.val());
System.out.println();
}
long zstart = System.nanoTime();
for (int j = 0; j < jiterations; j++) {
az();
}
long elapzed = System.nanoTime() - zstart;
int z = this.finishedZynced.decrementAndGet();
if ( z <= count ) {
zyncedCum.add(elapzed);
zyncedConv.add(elapzed);
}
if ( z == 0 ) {
// Just to avoid the output not overlapping with the one above
Threads.sleep(500);
System.out.println();
System.out.println("Zynced Cum: \t" + zyncedCum.val());
System.out.println("Zynced Conv:\t" + zyncedConv.val());
System.out.println();
}
}
synchronized void a() { b(); }
void b() { c(); }
void c() { d(); }
void d() { e(); }
void e() { f(); }
void f() { g(); }
void g() { h(); }
void h() { i(); }
void i() { }
synchronized void az() { bz(); }
synchronized void bz() { cz(); }
synchronized void cz() { dz(); }
synchronized void dz() { ez(); }
synchronized void ez() { fz(); }
synchronized void fz() { gz(); }
synchronized void gz() { hz(); }
synchronized void hz() { iz(); }
synchronized void iz() {}
}
Conclusion, there really is no difference.