How do I print entire number in Python from describe() function?

前端 未结 2 687
迷失自我
迷失自我 2021-01-01 13:00

I am doing some statistical work using Python\'s pandas and I am having the following code to print out the data description (mean, count, median, etc).

data         


        
2条回答
  •  离开以前
    2021-01-01 13:44

    Suppose you have the following DataFrame:

    Edit

    I checked the docs and you should probably use the pandas.set_option API to do this:

    In [13]: df
    Out[13]: 
                  a             b             c
    0  4.405544e+08  1.425305e+08  6.387200e+08
    1  8.792502e+08  7.135909e+08  4.652605e+07
    2  5.074937e+08  3.008761e+08  1.781351e+08
    3  1.188494e+07  7.926714e+08  9.485948e+08
    4  6.071372e+08  3.236949e+08  4.464244e+08
    5  1.744240e+08  4.062852e+08  4.456160e+08
    6  7.622656e+07  9.790510e+08  7.587101e+08
    7  8.762620e+08  1.298574e+08  4.487193e+08
    8  6.262644e+08  4.648143e+08  5.947500e+08
    9  5.951188e+08  9.744804e+08  8.572475e+08
    
    In [14]: pd.set_option('float_format', '{:f}'.format)
    
    In [15]: df
    Out[15]: 
                     a                b                c
    0 440554429.333866 142530512.999182 638719977.824965
    1 879250168.522411 713590875.479215  46526045.819487
    2 507493741.709532 300876106.387427 178135140.583541
    3  11884941.851962 792671390.499431 948594814.816647
    4 607137206.305609 323694879.619369 446424361.522071
    5 174424035.448168 406285189.907148 445616045.754137
    6  76226556.685384 979050957.963583 758710090.127867
    7 876261954.607558 129857447.076183 448719292.453509
    8 626264394.999419 464814260.796770 594750038.747595
    9 595118819.308896 974480400.272515 857247528.610996
    
    In [16]: df.describe()
    Out[16]: 
                         a                b                c
    count        10.000000        10.000000        10.000000
    mean  479461624.877280 522785202.100082 536344333.626082
    std   306428177.277935 320806568.078629 284507176.411675
    min    11884941.851962 129857447.076183  46526045.819487
    25%   240956633.919592 306580799.695412 445818124.696121
    50%   551306280.509214 435549725.351959 521734665.600552
    75%   621482597.825966 772901261.744377 728712562.052142
    max   879250168.522411 979050957.963583 948594814.816647
    

    End of edit

    In [7]: df
    Out[7]: 
                  a             b             c
    0  4.405544e+08  1.425305e+08  6.387200e+08
    1  8.792502e+08  7.135909e+08  4.652605e+07
    2  5.074937e+08  3.008761e+08  1.781351e+08
    3  1.188494e+07  7.926714e+08  9.485948e+08
    4  6.071372e+08  3.236949e+08  4.464244e+08
    5  1.744240e+08  4.062852e+08  4.456160e+08
    6  7.622656e+07  9.790510e+08  7.587101e+08
    7  8.762620e+08  1.298574e+08  4.487193e+08
    8  6.262644e+08  4.648143e+08  5.947500e+08
    9  5.951188e+08  9.744804e+08  8.572475e+08
    
    In [8]: df.describe()
    Out[8]: 
                      a             b             c
    count  1.000000e+01  1.000000e+01  1.000000e+01
    mean   4.794616e+08  5.227852e+08  5.363443e+08
    std    3.064282e+08  3.208066e+08  2.845072e+08
    min    1.188494e+07  1.298574e+08  4.652605e+07
    25%    2.409566e+08  3.065808e+08  4.458181e+08
    50%    5.513063e+08  4.355497e+08  5.217347e+08
    75%    6.214826e+08  7.729013e+08  7.287126e+08
    max    8.792502e+08  9.790510e+08  9.485948e+08
    

    You need to fiddle with the pandas.options.display.float_format attribute. Note, in my code I've used import pandas as pd. A quick fix is something like:

    In [29]: pd.options.display.float_format = "{:.2f}".format
    
    In [10]: df
    Out[10]: 
                 a            b            c
    0 440554429.33 142530513.00 638719977.82
    1 879250168.52 713590875.48  46526045.82
    2 507493741.71 300876106.39 178135140.58
    3  11884941.85 792671390.50 948594814.82
    4 607137206.31 323694879.62 446424361.52
    5 174424035.45 406285189.91 445616045.75
    6  76226556.69 979050957.96 758710090.13
    7 876261954.61 129857447.08 448719292.45
    8 626264395.00 464814260.80 594750038.75
    9 595118819.31 974480400.27 857247528.61
    
    In [11]: df.describe()
    Out[11]: 
                     a            b            c
    count        10.00        10.00        10.00
    mean  479461624.88 522785202.10 536344333.63
    std   306428177.28 320806568.08 284507176.41
    min    11884941.85 129857447.08  46526045.82
    25%   240956633.92 306580799.70 445818124.70
    50%   551306280.51 435549725.35 521734665.60
    75%   621482597.83 772901261.74 728712562.05
    max   879250168.52 979050957.96 948594814.82
    

提交回复
热议问题