I want to create a data processing pipeline in AWS to eventually use the processed data for Machine Learning.
I have a Scala script that takes raw data from S3, proc
To merge files in a folder into one file:
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs._
def merge(srcPath: String, dstPath: String): Unit = {
val hadoopConfig = new Configuration()
val hdfs = FileSystem.get(hadoopConfig)
FileUtil.copyMerge(hdfs, new Path(srcPath), hdfs, new Path(dstPath), false, hadoopConfig, null)
}
If you want to merge all files into one file, but still in the same folder (but this brings all data to the driver node):
dataFrame
.coalesce(1)
.write
.format("com.databricks.spark.csv")
.option("header", "true")
.save(out)
Another solution would be to use solution #2 then move the one file inside the folder to another path (with the name of our CSV file).
def df2csv(df: DataFrame, fileName: String, sep: String = ",", header: Boolean = false): Unit = {
val tmpDir = "tmpDir"
df.repartition(1)
.write
.format("com.databricks.spark.csv")
.option("header", header.toString)
.option("delimiter", sep)
.save(tmpDir)
val dir = new File(tmpDir)
val tmpCsvFile = tmpDir + File.separatorChar + "part-00000"
(new File(tmpCsvFile)).renameTo(new File(fileName))
dir.listFiles.foreach( f => f.delete )
dir.delete
}