I have a pandas dataframe:
+---------------+-------------+
| Test_Category | Test_Result |
+---------------+-------------+
| Cat_1 | Pass |
|
You could construct a new dataframe using unique values in the two columns as indices and columns, and use pandas' iterrows()
df_out = pd.DataFrame(index=df['Test_Category'].unique().tolist(), columns=df['Test_Result'].unique().tolist())
for index, row in df_out.iterrows():
for col in df_out.columns:
df_out.loc[index, col] = len(df[(df['Test_Category'] == index) & (df['Test_Result'] == col)])
Output:
Pass nan Fail
Cat1 1 1 0
Cat2 0 0 2
Cat3 2 1 1
Although using groupby() should definitely be faster.