I have the following array which contains arrays of values:
$array = array(
    array(\'1\', \'2\'),
    array(\'a\', \'b\', \'c\'),
    array(\'x\', \'y\'),         
        
This can be refactored using recursion making it work with any arbitrary amount of arrays. If I find the time, I'll give it a try myself.
ps. I don't know php, the example is written in Delphi.
Edit: recursive solution with arbitrary # arrays
type
  TSingleArray = array of string;
  TMasterArray = array of TSingleArray;
var
  solutions: array of integer; // Q&D container to hold currently used indexes of SingleArrays
procedure WriteSolution(const masterArray: TMasterArray);
var
  I: Integer;
  indexes: string;
  solution: string;
begin
  for I := 0 to High(solutions) do
  begin
    indexes := indexes + IntToStr(solutions[I]) + ' ';
    solution := solution + masterArray[I][solutions[I]];
  end;
  Writeln('Solution: ' + solution + ' Using indexes: ' + indexes);
end;
procedure FindSolution(const masterArray: TMasterArray; const singleArrayIndex: Integer; var bits: Integer);
var
  I: Integer;
begin
  for I := 0 to High(masterArray[singleArrayIndex]) do
  begin
    //***** Use bit manipulation to check if current index is already in use
    if bits and (1 shl I)  = (1 shl I ) then continue;
    solutions[singleArrayIndex] := I;
    Inc(bits, 1 shl I);
    //***** If it is not the last array in our masterArray, continue by calling RecursArrays recursivly.
    if singleArrayIndex <> High(masterArray) then FindSolution(masterArray, Succ(singleArrayIndex), bits)
    else WriteSolution(masterArray);
    Dec(bits, 1 shl I);
  end;
end;
//***************
// Initialization
//***************
var
  I, J: Integer;
  bits: Integer;
  singleArrayString: string;
  masterArray: TMasterArray;
begin
  I := 10;
  SetLength(masterArray, I);
  for I := 0 to High(masterArray) do
  begin
    SetLength(masterArray[I], High(masterArray) + Succ(I));
    singleArrayString := EmptyStr;
    for J := 0 to High(masterArray[I]) do
    begin
      masterArray[I][J] := IntToStr(J);
      singleArrayString := singleArrayString + masterArray[I][J];
    end;
    WriteLn(singleArrayString)
  end;
  ReadLn;
  //****** Start solving the problem using recursion
  bits := 0;
  SetLength(solutions, Succ(High(masterArray)));
  FindSolution(masterArray, 0, bits);    
end.