Here is a MATLAB code for performing Gram Schmidt in page 1 http://web.mit.edu/18.06/www/Essays/gramschmidtmat.pdf
I am trying for hours and hours to perform this wi
Here a version very similar to yours but without the use of the extra variabale v. I use directly the Q matrix. So no need to use drop. Of course since you have j-1 in the index you need to add the condition j>1.
f=function(x){
m <- nrow(x)
n <- ncol(x)
Q <- matrix(0, m, n)
R <- matrix(0, n, n)
for (j in 1:n) {
Q[, j] <- x[, j]
if (j > 1) {
for (i in 1:(j - 1)) {
R[i, j] <- t(Q[, i]) %*% Q[, j]
Q[, j] <- Q[, j] - R[i, j] * Q[, i]
}
}
R[j, j] <- max(svd(Q[, j])$d)
Q[, j] <- Q[, j]/R[j, j]
}
return(list(Q = Q, R = R))
}
EDIT add some benchmarking:
To get some real case I use the Hilbert matrix from the Matrix package.
library(microbenchmark)
library(Matrix)
A <- as.matrix(Hilbert(100))
microbenchmark(grahm_schimdtR(A),
grahm_schimdtCpp(A),times = 100L)
Unit: milliseconds
expr min lq median uq max neval
grahm_schimdtR(A) 330.77424 335.648063 337.443273 343.72888 601.793201 100
grahm_schimdtCpp(A) 1.45445 1.510768 1.615255 1.66816 2.062018 100
As expected CPP solution is really fster.