Ok this is the over all view of what i\'m trying to achieve with dplyr:
Using dplyr I am making calculations to form new columns.
initial.
This kind of use of first and last is very untidy, so we'll keep it for the latest step.
First we build intermediate data, following your code, but adding some columns to join later at the right places. I'm not sure if you need to keep all columns, you won't need the second join if not.
library(dplyr)
library(tidyr)
df1 <- df0 %>%
dplyr::mutate(RunID = data.table::rleid(x.long)) %>%
group_by(RunID) %>%
mutate(RunID_f = ifelse(row_number()==1,RunID,NA)) %>% # for later merge
mutate(RunID_l = ifelse(row_number()==n(),RunID,NA)) # possibly unneeded
Then we build summarized data, I refactored your code a bit as you see, because these operations "should" be rowwise.
summarized_data <- df1 %>%
filter(x.long !=0) %>%
summarize_at(vars(close.x,inital.capital),c("first","last")) %>%
mutate(x.long.share = inital.capital_first / close.x_first,
x.end.value = x.long.share * close.x_last,
x.net.profit = inital.capital_last - x.end.value,
new.initial.capital = x.net.profit + inital.capital_last,
lagged.new.initial.capital = lag(new.initial.capital,1))
# A tibble: 2 x 10
# RunID close.x_first inital.capital_first close.x_last inital.capital_last x.long.share x.end.value x.net.profit new.initial.capital lagged.new.initial.capital
#
# 1 3 38.85 10000 38.13 10000 257.4003 9814.672 185.3282 10185.328 NA
# 2 5 33.03 10000 34.34 10000 302.7551 10396.609 -396.6091 9603.391 10185.33
Then we join our summarized table to the original, getting advantage of the trick of the firt step. The first join may be skipped if you don't need all columns.
df2 <- df1 %>% ungroup %>%
left_join(summarized_data %>% select(-lagged.new.initial.capital) ,by=c("RunID_l"="RunID")) %>% # if you want the other variables, if not, skip the line
left_join(summarized_data %>% select(RunID,lagged.new.initial.capital) ,by=c("RunID_f"="RunID")) %>%
mutate(inital.capital = ifelse(is.na(lagged.new.initial.capital),inital.capital,lagged.new.initial.capital)) %>%
select(close.x:inital.capital) # for readability here
# # A tibble: 20 x 6
# close.x x.long y.short x.short y.long inital.capital
#
# 1 37.9600 NA NA NA NA 10000.00
# 2 36.5200 0 0 0 0 10000.00
# 3 38.3200 0 0 0 0 10000.00
# 4 38.5504 0 0 0 0 10000.00
# 5 38.1700 0 0 0 0 10000.00
# 6 38.8500 1 1 0 0 10000.00
# 7 38.5300 1 1 0 0 10000.00
# 8 39.1300 1 1 0 0 10000.00
# 9 38.1300 1 1 0 0 10000.00
# 10 37.0100 0 0 1 1 10000.00
# 11 36.1400 0 0 1 1 10000.00
# 12 35.2700 0 0 1 1 10000.00
# 13 35.1300 0 0 1 1 10000.00
# 14 32.2000 0 0 1 1 10000.00
# 15 33.0300 1 1 0 0 10185.33
# 16 34.9400 1 1 0 0 10000.00
# 17 34.5700 1 1 0 0 10000.00
# 18 33.6000 1 1 0 0 10000.00
# 19 34.3400 1 1 0 0 10000.00
# 20 35.8600 0 0 1 1 10000.00
data
df<- read.table(text="close.x x.long y.short x.short y.long inital.capital x.long.shares x.end.value x.net.profit new.initial.capital
37.96 NA NA NA NA 10000 NA NA NA NA
36.52 0 0 0 0 10000 0 0 0 0
38.32 0 0 0 0 10000 0 0 0 0
38.5504 0 0 0 0 10000 0 0 0 0
38.17 0 0 0 0 10000 0 0 0 0
38.85 1 1 0 0 10000 0 0 0 0
38.53 1 1 0 0 10000 0 0 0 0
39.13 1 1 0 0 10000 0 0 0 0
38.13 1 1 0 0 10000 257.4002574 9814.671815 185.3281853 10185.32819
37.01 0 0 1 1 10000 0 0 0 0
36.14 0 0 1 1 10000 0 0 0 0
35.27 0 0 1 1 10000 0 0 0 0
35.13 0 0 1 1 10000 0 0 0 0
32.2 0 0 1 1 10000 0 0 0 0
33.03 1 1 0 0 10000 0 0 0 0
34.94 1 1 0 0 10000 0 0 0 0
34.57 1 1 0 0 10000 0 0 0 0
33.6 1 1 0 0 10000 0 0 0 0
34.34 1 1 0 0 10000 302.7550711 10396.60914 -396.6091432 9603.390857
35.86 0 0 1 1 10000 0 0 0 0",stringsAsFactors=FALSE,header=TRUE)
df0 <- df %>% select(close.x:inital.capital)