java.util.Random.nextDouble() is slow for me and I need something really fast.
I did some google search and I\'ve found only integers based fast random generators.
Imho you should just accept juhist's answer - here's why.
nextDouble is slow because it makes two calls to next() - it's written right there in the documentation.
So your best options are:
Here's an overly long benchmark with java's Random, an LCG (as bad as java.util.Random), and Marsaglia's universal generator (the version generating doubles).
import java.util.*;
public class d01 {
private static long sec(double x)
{
return (long) (x * (1000L*1000*1000));
}
// ns/op: nanoseconds to generate a double
// loop until it takes a second.
public static double ns_op(Random r)
{
long nanos = -1;
int n;
for(n = 1; n < 0x12345678; n *= 2) {
long t0 = System.nanoTime();
for(int i = 0; i < n; i++)
r.nextDouble();
nanos = System.nanoTime() - t0;
if(nanos >= sec(1))
break;
if(nanos < sec(0.1))
n *= 4;
}
return nanos / (double)n;
}
public static void bench(Random r)
{
System.out.println(ns_op(r) + " " + r.toString());
}
public static void main(String[] args)
{
for(int i = 0; i < 3; i++) {
bench(new Random());
bench(new LCG64(new Random().nextLong()));
bench(new UNI_double(new Random().nextLong()));
}
}
}
// straight from wikipedia
class LCG64 extends java.util.Random {
private long x;
public LCG64(long seed) {
this.x = seed;
}
@Override
public long nextLong() {
x = x * 6364136223846793005L + 1442695040888963407L;
return x;
}
@Override
public double nextDouble(){
return (nextLong() >>> 11) * (1.0/9007199254740992.0);
}
@Override
protected int next(int nbits)
{
throw new RuntimeException("TODO");
}
}
class UNI_double extends java.util.Random {
// Marsaglia's UNIversal random generator extended to double precision
// G. Marsaglia, W.W. Tsang / Statistics & Probability Letters 66 (2004) 183 – 187
private final double[] U = new double[98];
static final double r=9007199254740881.0/9007199254740992.;
static final double d=362436069876.0/9007199254740992.0;
private double c=0.;
private int i=97,j=33;
@Override
public double nextDouble(){
double x;
x=U[i]- U[j];
if(x<0.0)
x=x+1.0;
U[i]=x;
if(--i==0) i=97;
if(--j==0) j=97;
c=c-d;
if(c<0.0)
c=c+r;
x=x-c;
if(x<0.)
return x+1.;
return x;
}
//A two-seed function for filling the static array U[98] one bit at a time
private
void fillU(int seed1, int seed2){
double s,t;
int x,y,i,j;
x=seed1;
y=seed2;
for (i=1; i<98; i++){
s= 0.0;
t=0.5;
for (j=1; j<54; j++){
x=(6969*x) % 65543;
// typo in the paper:
//y=(8888*x) % 65579;
//used forthe demo in the last page of the paper.
y=(8888*y) % 65579;
if(((x^y)& 32)>0)
s=s+t;
t=.5*t;
}
if(x == 0)
throw new IllegalArgumentException("x");
if(y == 0)
throw new IllegalArgumentException("y");
U[i]=s;
}
}
// Marsaglia's test code is useless because of a typo in fillU():
// x=(6969*x)%65543;
// y=(8888*x)% 65579;
public UNI_double(long seed)
{
Random r = new Random(seed);
for(;;) {
try {
fillU(r.nextInt(), r.nextInt());
break;
} catch(Exception e) {
// loop again
}
}
}
@Override
protected int next(int nbits)
{
throw new RuntimeException("TODO");
}
}