I have a function that tells me the nth number in a Fibonacci sequence. The problem is it becomes very slow when trying to find larger numbers in the Fibonacci sequence doe
One simple way to speed up the recursive implementation of a Fibonacci function is to realize that, substituting f(n-1) by its definition,
f(n) = f(n-1) + f(n-2)
= f(n-2) + f(n-3) + f(n-2)
= 2*f(n-2) + f(n-3)
This simple transformation greatly reduces the number of steps taken to compute a number in the series.
If we start with OP's code, slightly corrected:
function result = fibonacci(n)
switch n
case 0
result = 0;
case 1
result = 1;
case 2
result = 1;
case 3
result = 2;
otherwise
result = fibonacci(n-2) + fibonacci(n-1);
end
And apply our transformation:
function result = fibonacci_fast(n)
switch n
case 0
result = 0;
case 1
result = 1;
case 2
result = 1;
case 3
result = 2;
otherwise
result = fibonacci_fast(n-3) + 2*fibonacci_fast(n-2);
end
Then we see a 30x speed improvement for computing the 20th number in the series (using Octave):
>> tic; for ii=1:100, fibonacci(20); end; toc
Elapsed time is 12.4393 seconds.
>> tic; for ii=1:100, fibonacci_fast(20); end; toc
Elapsed time is 0.448623 seconds.
Of course Rashid's non-recursive implementation is another 60x faster still: 0.00706792 seconds.