I\'m looking for algorithms like ones in the stl (push_heap, pop_heap, make_heap) except with the ability to pop both the minimum and
Sorry for lengthy code but it works fine except it may complicate to read and may contain some unnecessary variables and I am not uploading the Insert function. Use it as include .h file.
#include
#define bool int
#define true 1
#define false 0
#define Left(i) (2 * (i))
#define Right(i) (2 * (i) + 1)
#define Parent(i) ((i) / 2)
void TrickleDown(int* A, int n)
{
int i;
for (i = 1; i <= n / 2; i++)
{
if (isMinLevel(i, n) == true)
TrickleDownMin(A, i, n);
else
TrickleDownMax(A, i, n);
Print(A, n);
printf("i = %d\n", i);
}
}
int isMinLevel(int i, int n)//i is on min level or not
{
int h = 2;
if (i == 1)
return true;
while (true)
{
if (i >= pow(2, h) && i <= pow(2, h + 1) - 1)
return true;
else if (i > n || i < pow(2, h))
return false;
h += 2;
}
}
void swap(int* a, int* b)
{
*a ^= *b;
*b ^= *a;
*a ^= *b;
}
void TrickleDownMin(int* A, int i, int n)
{
int m, lc, rc, mc, lclc, lcrc, mlc, rclc, rcrc, mrc;
int child;
lc = Left(i);
if (lc > n) // A[i] has no children
return;
else
{
rc = Right(i);
mc = rc > n ? lc : (A[lc] > A[rc]) ? rc : lc;
child = true; // keep tracking m comes from children or grandchildren
// m = smallest of children and grand children
lclc = Left(lc);
if (lclc <= n)
{
lcrc = Right(lc);
mlc = lcrc > n ? lclc :(A[lclc] > A[lcrc]) ? lcrc : lclc;
mc = mlc > mc ? mc : mlc;
if (mc == mlc)
child = false;
}
rclc = Left(rc);
if (rclc <= n)
{
rcrc = Right(rc);
mrc = rcrc > n ? rclc : (A[rclc] > A[rcrc]) ? rcrc : rclc;
mc = mrc > mc ? mc : mrc;
if (mc == mrc)
child = false;
}
m = mc;
if (!child)//m is one of the child of i
{
if (A[m] < A[i])
{
swap(&A[m], &A[i]);
if (A[m] > A[Parent(m)])
swap(&A[m], &A[Parent(m)]);
TrickleDownMin(A, i, m);
}
}
else //m is child of i
{
if (A[m] < A[i])
swap(&A[i], &A[m]);
}
}
}
void TrickleDownMax(int* A, int i, int n)
{
int m, lc, rc, mc, lclc, lcrc, mlc, rclc, rcrc, mrc;
int child;
lc = Left(i);
if (lc > n)//A[i] has no children
return;
else
{
rc = Right(i);
mc = rc > n ? lc : (A[lc] < A[rc]) ? rc : lc;
child = true; //keep tracking m comes from choldren or grandchildren
//m = greatest of children and grand children
lclc = Left(lc);
if (lclc <= n)
{
lcrc = Right(lc);
mlc = lcrc < n ? lclc : (A[lclc] < A[lcrc]) ? lcrc : lclc;
mc = mlc < mc ? mc : mlc;
if (mc == mlc)
child = false;
}
rclc = Left(rc);
if (rclc <= n)
{
rcrc = Right(rc);
mrc = rcrc < n ? rclc : (A[rclc] < A[rcrc]) ? rcrc : rclc;
mc = mrc < mc ? mc : mrc;
if (mc == mrc)
child = false;
}
m = mc;
if (!child)//m is one of the child of i
{
if (A[m] > A[i])
{
swap(&A[m], &A[i]);
if (A[m] < A[Parent(m)])
swap(&A[m], &A[Parent(m)]);
TrickleDownMax(A, i, m);
}
}
else //m is child of i
{
if (A[m] > A[i])
swap(&A[i], &A[m]);
}
}
}
void Print(int* a, int n)
{
int i;
for (i = 1; i < n + 1; i++)
{
printf("%d ", a[i]);
}
}
int DeleteMin(int* A, int n)
{
int min_index = 1;
int min = A[1];
swap(&A[min_index], &A[n]);
n--;
TrickleDown(A, n);
return min;
}
int DeleteMax(int* A, int n)
{
int max_index, max;
max_index = n < 3 ? 2 : (A[2] > A[3]) ? 2 : 3;
max = A[max_index];
swap(&A[max_index], &A[n]);
n--;
TrickleDown(A, n);
return max;
}