I\'m using Keras to predict a time series. As standard I\'m using 20 epochs. I want to check if my model is learning well, by predicting for each one of the 20 epochs.
<
The following code will do the desired job:
import tensorflow as tf
import keras
# define your custom callback for prediction
class PredictionCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
y_pred = self.model.predict(self.validation_data[0])
print('prediction: {} at epoch: {}'.format(y_pred, epoch))
# ...
# register the callback before training starts
model.fit(X_train, y_train, batch_size=32, epochs=25,
validation_data=(X_valid, y_valid),
callbacks=[PredictionCallback()])