I have a matrix (I guess in MatLab you call it a struct) or data structure:
data: [150x4 double]
labels: [150x1 double]
here is out my ma
Here is my take for this cross validation. I create dummy data using magic(10) also I create labels randomly. Idea is following , we get our data and labels and combine them with random column. Consider following dummy code.
>> data = magic(4)
data =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
>> dataRowNumber = size(data,1)
dataRowNumber =
4
>> randomColumn = rand(dataRowNumber,1)
randomColumn =
0.8147
0.9058
0.1270
0.9134
>> X = [ randomColumn data]
X =
0.8147 16.0000 2.0000 3.0000 13.0000
0.9058 5.0000 11.0000 10.0000 8.0000
0.1270 9.0000 7.0000 6.0000 12.0000
0.9134 4.0000 14.0000 15.0000 1.0000
If we sort X according column 1, we sort our data randomly. This will give us cross validation randomness. Then next thing is to divide X according to cross validation percentage. Accomplishing this for one case easy enough. Lets consider %75 percent is train case and %25 percent is test case. Our size here is 4, then 3/4 = %75 and 1/4 is %25.
testDataset = X(1,:)
trainDataset = X(2:4,:)
But accomplishing this a bit harder for N cross folds. Since we need to make this N times. For loop is necessary for this. For 5 cross folds. I get , in first f
Following code is an example for this process:
data = magic(10);
dataRowNumber = size(data,1);
labels= rand(dataRowNumber,1) > 0.5;
randomColumn = rand(dataRowNumber,1);
X = [ randomColumn data labels];
SortedData = sort(X,1);
crossValidationFolds = 5;
numberOfRowsPerFold = dataRowNumber / crossValidationFolds;
crossValidationTrainData = [];
crossValidationTestData = [];
for startOfRow = 1:numberOfRowsPerFold:dataRowNumber
testRows = startOfRow:startOfRow+numberOfRowsPerFold-1;
if (startOfRow == 1)
trainRows = [max(testRows)+1:dataRowNumber];
else
trainRows = [1:startOfRow-1 max(testRows)+1:dataRowNumber];
end
crossValidationTrainData = [crossValidationTrainData ; SortedData(trainRows ,:)];
crossValidationTestData = [crossValidationTestData ;SortedData(testRows ,:)];
end