I have a set of calculated OHLCVA daily securities data in a pandas dataframe like this:
>>> type(data_dy)
Thank you J Bradley, your solution worked perfectly. I did have to upgrade my version of pandas from their official website though as the version installed via pip did not have CustomBusinessMonthBegin in pandas.tseries.offsets. My final code was:
#----- imports -----
import pandas as pd
from pandas.tseries.offsets import CustomBusinessMonthBegin
import pandas.io.data as web
#----- get sample data -----
df = web.get_data_yahoo('SPY', '2012-12-01', '2013-12-31')
#----- build custom calendar -----
month_index =df.index.to_period('M')
min_day_in_month_index = pd.to_datetime(df.set_index(month_index, append=True).reset_index(level=0).groupby(level=0)['Open'].min())
custom_month_starts = CustomBusinessMonthBegin(calendar = min_day_in_month_index)
#----- convert daily data to monthly data -----
ohlc_dict = {'Open':'first','High':'max','Low':'min','Close': 'last','Volume': 'sum','Adj Close': 'last'}
mthly_ohlcva = df.resample(custom_month_starts, how=ohlc_dict)
This yielded the following:
>>> mthly_ohlcva
Volume Adj Close High Low Close Open
Date
2012-12-03 2889875900 136.92 145.58 139.54 142.41 142.80
2013-01-01 2587140200 143.92 150.94 144.73 149.70 145.11
2013-02-01 2581459300 145.76 153.28 148.73 151.61 150.65
2013-03-01 2330972300 151.30 156.85 150.41 156.67 151.09
2013-04-01 2907035000 154.20 159.72 153.55 159.68 156.59
2013-05-01 2781596000 157.84 169.07 158.10 163.45 159.33
2013-06-03 3533321800 155.74 165.99 155.73 160.42 163.83
2013-07-01 2330904500 163.78 169.86 160.22 168.71 161.26
2013-08-01 2283131700 158.87 170.97 163.05 163.65 169.99
2013-09-02 2226749600 163.90 173.60 163.70 168.01 165.23
2013-10-01 2901739000 171.49 177.51 164.53 175.79 168.14
2013-11-01 1930952900 176.57 181.75 174.76 181.00 176.02
2013-12-02 2232775900 181.15 184.69 177.32 184.69 181.09