R: Rolling window function with adjustable window and step-size for irregularly spaced observations

后端 未结 5 2095
萌比男神i
萌比男神i 2020-12-30 11:34

Say there is a 2-column data frame with a time or distance column which sequentially increases and an observation column which may have NAs here and there. How can I effici

5条回答
  •  渐次进展
    2020-12-30 12:23

    Here is an attempt with Rcpp. The function assumes that data is sorted according to time. More testing would be advisable and adjustments could be made.

    #include 
    using namespace Rcpp;
    
    
    // [[Rcpp::export]]
    NumericVector rollAverage(const NumericVector & times, 
                              NumericVector & vals, 
                              double start,
                              const double winlen, 
                              const double winshift) {
      int n = ceil((max(times) - start) / winshift);
      NumericVector winvals;
      NumericVector means(n);
      int ind1(0), ind2(0);
      for(int i=0; i < n; i++) {
        if (times[0] < (start+winlen)) {
          while((times[ind1] <= start) & 
                    (times[ind1+1] <= (start+winlen)) & 
                    (ind1 < (times.size() - 1))) {
            ind1++;
          }    
    
          while((times[ind2+1] <= (start+winlen)) & (ind2 < (times.size() - 1))) {
            ind2++;
          }  
    
          if (times[ind1] >= start) {
            winvals = vals[seq(ind1, ind2)];
            means[i] = mean(winvals);
          } else {
            means[i] = NA_REAL;
          }
          } else {
            means[i] = NA_REAL;
        }
    
        start += winshift;    
      }
    
       return means;
    }
    

    Testing it:

    set.seed(42)
    dat <- data.frame(time = seq(1:20)+runif(20,0,1))
    dat <- data.frame(dat, measure=c(diff(dat$time),NA_real_))
    dat$measure[sample(1:19,2)] <- NA_real_
    
    rollAverage(dat$time, dat$measure, -2.5, 5.0, 2.5)
    #[1] 1.0222694        NA        NA 1.0126639 0.9965048 0.9514456 1.0518228        NA        NA        NA
    

    With your list of data.frames (using data.table):

    set.seed(42)
    dat <- data.frame(time = seq(1:50000)+runif(50000, 0.025, 1))
    dat <- data.frame(dat, measure=c(diff(dat$time),NA_real_))
    dat$measure[sample(1:50000,1000)] <- NA_real_
    dat$measure[c(350:450,3000:3300, 20000:28100)] <- NA_real_
    dat <- dat[-c(1000:2000, 30000:35000),] 
    
    # a list with a realistic number of observations:
    dat <- lapply(1:300,function(x) dat)
    
    library(data.table)
    dat <- lapply(dat, setDT)
    for (ind in seq_along(dat)) dat[[ind]][, i := ind]
    #possibly there is a way to avoid these copies?
    
    dat <- rbindlist(dat)
    
    system.time(res <- dat[, rollAverage(time, measure, -2.5, 5.0, 2.5), by=i])
    #user  system elapsed 
    #1.51    0.02    1.54 
    print(res)
    #           i        V1
    #      1:   1 1.0217126
    #      2:   1 0.9334415
    #      3:   1 0.9609050
    #      4:   1 1.0123473
    #      5:   1 0.9965922
    #     ---              
    #6000596: 300 1.1121296
    #6000597: 300 0.9984581
    #6000598: 300 1.0093060
    #6000599: 300        NA
    #6000600: 300        NA
    

提交回复
热议问题