Sine curve fit using lm and nls in R

后端 未结 4 1483
自闭症患者
自闭症患者 2020-12-30 09:42

I am a beginner in curve fitting and several posts on Stackoverflow really helped me.

I tried to fit a sine curve to my data using lm and nls

4条回答
  •  死守一世寂寞
    2020-12-30 09:48

    Not sure if this might help - I get a similar fit using sine only:

    y = amplitude * sin(pi * (x - center) / width) + Offset
    
    amplitude =  2.0009690806953033E+00
    center = -2.5813588834888215E+01
    width =  1.8077550471975817E+02
    Offset =  2.6872265116104828E+01
    
    Fitting target of lowest sum of squared absolute error = 3.6755174406241423E+01
    
    Degrees of freedom (error): 90
    Degrees of freedom (regression): 3
    Chi-squared: 36.7551744062
    R-squared: 0.816419142696
    R-squared adjusted: 0.810299780786
    Model F-statistic: 133.415731033
    Model F-statistic p-value: 1.11022302463e-16
    Model log-likelihood: -89.2464811027
    AIC: 1.98396768304
    BIC: 2.09219299292
    Root Mean Squared Error (RMSE): 0.625309918107
    
    amplitude = 2.0009690806953033E+00
           std err squared: 1.03828E-02
           t-stat: 1.96374E+01
           p-stat: 0.00000E+00
           95% confidence intervals: [1.79853E+00, 2.20340E+00]
    center = -2.5813588834888215E+01
           std err squared: 2.98349E+01
           t-stat: -4.72592E+00
           p-stat: 8.41245E-06
           95% confidence intervals: [-3.66651E+01, -1.49621E+01]
    width = 1.8077550471975817E+02
           std err squared: 3.54835E+00
           t-stat: 9.59680E+01
           p-stat: 0.00000E+00
           95% confidence intervals: [1.77033E+02, 1.84518E+02]
    Offset = 2.6872265116104828E+01
           std err squared: 5.15458E-03
           t-stat: 3.74289E+02
           p-stat: 0.00000E+00
           95% confidence intervals: [2.67296E+01, 2.70149E+01]
    
    Coefficient Covariance Matrix
    [ 0.02542366 0.01786683 -0.05016085 -0.00652111]
    [ 1.78668314e-02 7.30548346e+01 -2.18160818e+01 1.24965136e-01]
    [ -5.01608451e-02 -2.18160818e+01 8.68860810e+00 -1.27401806e-02]
    [-0.00652111 0.12496514 -0.01274018 0.0126217 ]
    

    James Phillips zunzun@zunzun.com

提交回复
热议问题