This is a question regarding a piece of coursework so would rather you didn\'t fully answer the question but rather give tips to improve the run time complexity of my curren
Thanks to will's (first) answer, I had this idea:
Consider that any positive solution comes only from the 1's along the x and y axes. Each of the recursive calls to f divides each component of the solution by 3, which means we can sum, combinatorially, how many ways each 1 features as a component of the solution, and consider it's "distance" (measured as how many calls of f it is from the target) as a negative power of 3.
JavaScript code:
function f(n){
var result = 0;
for (var d=n; d<2*n; d++){
var temp = 0;
for (var NE=0; NE<2*n-d; NE++){
temp += choose(n,NE);
}
result += choose(d - 1,d - n) * temp / Math.pow(3,d);
}
return 2 * result;
}
function choose(n,k){
if (k == 0 || n == k){
return 1;
}
var product = n;
for (var i=2; i<=k; i++){
product *= (n + 1 - i) / i
}
return product;
}
Output:
for (var i=1; i<8; i++){
console.log("F(" + i + "," + i + ") = " + f(i));
}
F(1,1) = 0.6666666666666666
F(2,2) = 0.8148148148148148
F(3,3) = 0.8641975308641975
F(4,4) = 0.8879743941472337
F(5,5) = 0.9024030889600163
F(6,6) = 0.9123609205913732
F(7,7) = 0.9197747256986194