We have some nightly build machines that have the cuda libraries installed, but which do not have a cuda-capable GPU installed. These machines are capable of building cuda-
The answer to this question consists of two parts:
For part 1, the gpu sniffing program, I started with the answer provided by fabrizioM because it is so compact. I quickly discovered that I needed many of the details found in unknown's answer to get it to work well. What I ended up with is the following C source file, which I named has_cuda_gpu.c:
#include
#include
int main() {
int deviceCount, device;
int gpuDeviceCount = 0;
struct cudaDeviceProp properties;
cudaError_t cudaResultCode = cudaGetDeviceCount(&deviceCount);
if (cudaResultCode != cudaSuccess)
deviceCount = 0;
/* machines with no GPUs can still report one emulation device */
for (device = 0; device < deviceCount; ++device) {
cudaGetDeviceProperties(&properties, device);
if (properties.major != 9999) /* 9999 means emulation only */
++gpuDeviceCount;
}
printf("%d GPU CUDA device(s) found\n", gpuDeviceCount);
/* don't just return the number of gpus, because other runtime cuda
errors can also yield non-zero return values */
if (gpuDeviceCount > 0)
return 0; /* success */
else
return 1; /* failure */
}
Notice that the return code is zero in the case where a cuda-enabled GPU is found. This is because on one of my has-cuda-but-no-GPU machines, this program generates a runtime error with non-zero exit code. So any non-zero exit code is interpreted as "cuda does not work on this machine".
You might ask why I don't use cuda emulation mode on non-GPU machines. It is because emulation mode is buggy. I only want to debug my code, and work around bugs in cuda GPU code. I don't have time to debug the emulator.
The second part of the problem is the cmake code to use this test program. After some struggle, I have figured it out. The following block is part of a larger CMakeLists.txt file:
find_package(CUDA)
if(CUDA_FOUND)
try_run(RUN_RESULT_VAR COMPILE_RESULT_VAR
${CMAKE_BINARY_DIR}
${CMAKE_CURRENT_SOURCE_DIR}/has_cuda_gpu.c
CMAKE_FLAGS
-DINCLUDE_DIRECTORIES:STRING=${CUDA_TOOLKIT_INCLUDE}
-DLINK_LIBRARIES:STRING=${CUDA_CUDART_LIBRARY}
COMPILE_OUTPUT_VARIABLE COMPILE_OUTPUT_VAR
RUN_OUTPUT_VARIABLE RUN_OUTPUT_VAR)
message("${RUN_OUTPUT_VAR}") # Display number of GPUs found
# COMPILE_RESULT_VAR is TRUE when compile succeeds
# RUN_RESULT_VAR is zero when a GPU is found
if(COMPILE_RESULT_VAR AND NOT RUN_RESULT_VAR)
set(CUDA_HAVE_GPU TRUE CACHE BOOL "Whether CUDA-capable GPU is present")
else()
set(CUDA_HAVE_GPU FALSE CACHE BOOL "Whether CUDA-capable GPU is present")
endif()
endif(CUDA_FOUND)
This sets a CUDA_HAVE_GPU boolean variable in cmake that can subsequently be used to trigger conditional operations.
It took me a long time to figure out that the include and link parameters need to go in the CMAKE_FLAGS stanza, and what the syntax should be. The try_run documentation is very light, but there is more information in the try_compile documentation, which is a closely related command. I still needed to scour the web for examples of try_compile and try_run before getting this to work.
Another tricky but important detail is the third argument to try_run, the "bindir". You should probably always set this to ${CMAKE_BINARY_DIR}. In particular, do not set it to ${CMAKE_CURRENT_BINARY_DIR} if you are in a subdirectory of your project. CMake expects to find the subdirectory CMakeFiles/CMakeTmp within bindir, and spews errors if that directory does not exist. Just use ${CMAKE_BINARY_DIR}, which is one location where those subdirectories seem to naturally reside.