I use the following code when training a model in keras
from keras.callbacks import EarlyStopping
model = Sequential()
model.add(Dense(100, activation=\'rel
I guess model_2.compile
was a typo.
This should help if you want to save the best model w.r.t to the val_losses -
checkpoint = ModelCheckpoint('model-{epoch:03d}-{acc:03f}-{val_acc:03f}.h5', verbose=1, monitor='val_loss',save_best_only=True, mode='auto')
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy'])
model.fit(X, y, epochs=15, validation_split=0.4, callbacks=[checkpoint], verbose=False)