I want to train a simple neural network on PyTorch using a personal database. This database is imported from an Excel file and stored in df.
One of the
I'm referring to the question in the title as you haven't really specified anything else in the text, so just converting the DataFrame into a PyTorch tensor.
Without information about your data, I'm just taking float values as example targets here.
Convert Pandas dataframe to PyTorch tensor?
import pandas as pd
import torch
import random
# creating dummy targets (float values)
targets_data = [random.random() for i in range(10)]
# creating DataFrame from targets_data
targets_df = pd.DataFrame(data=targets_data)
targets_df.columns = ['targets']
# creating tensor from targets_df
torch_tensor = torch.tensor(targets_df['targets'].values)
# printing out result
print(torch_tensor)
Output:
tensor([ 0.5827, 0.5881, 0.1543, 0.6815, 0.9400, 0.8683, 0.4289,
0.5940, 0.6438, 0.7514], dtype=torch.float64)
Tested with Pytorch 0.4.0.
I hope this helps, if you have any further questions - just ask. :)