I have a 0.7 GB MongoDB database containing tweets that I\'m trying to load into a dataframe. However, I get an error.
MemoryError:
My
an elegant way of doing it would be as follows:
import pandas as pd
def my_transform_logic(x):
if x :
do_something
return result
def process(cursor):
df = pd.DataFrame(list(cursor))
df['result_col'] = df['col_to_be_processed'].apply(lambda value: my_transform_logic(value))
#making list off dictionaries
db.collection_name.insert_many(final_df.to_dict('records'))
# or update
db.collection_name.update_many(final_df.to_dict('records'),upsert=True)
#make a list of cursors.. you can read the parallel_scan api of pymongo
cursors = mongo_collection.parallel_scan(6)
for cursor in cursors:
process(cursor)
I tried the above process on a mongoDB collection with 2.6 million records using Joblib on the above code. My code didnt throw any memory errors and the processing finished in 2 hrs.