I have this problem. I try to triangulate points cloud by scipy.spatial.Delaunay. I used:
tri = Delaunay(points) # points: np.array() of 3d points
indices =
Following Jaime's answer, but elaborating a bit more with an example:
import matplotlib as mpl
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d as a3
import numpy as np
import scipy as sp
from scipy import spatial as sp_spatial
def icosahedron():
h = 0.5*(1+np.sqrt(5))
p1 = np.array([[0, 1, h], [0, 1, -h], [0, -1, h], [0, -1, -h]])
p2 = p1[:, [1, 2, 0]]
p3 = p1[:, [2, 0, 1]]
return np.vstack((p1, p2, p3))
def cube():
points = np.array([
[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1],
[1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1],
])
return points
points = icosahedron()
# points = cube()
hull = sp_spatial.ConvexHull(points)
indices = hull.simplices
faces = points[indices]
print('area: ', hull.area)
print('volume: ', hull.volume)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.dist = 30
ax.azim = -140
ax.set_xlim([0, 2])
ax.set_ylim([0, 2])
ax.set_zlim([0, 2])
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
for f in faces:
face = a3.art3d.Poly3DCollection([f])
face.set_color(mpl.colors.rgb2hex(sp.rand(3)))
face.set_edgecolor('k')
face.set_alpha(0.5)
ax.add_collection3d(face)
plt.show()
Which should depict the following figure: