First, I am very new to SPARK
I have millions of records in my Dataset and i wanted to groupby with name column and finding names which having maximum age. I am gett
What your trying to achieve is
This alternative achieves this output without use of aggregate
import org.apache.spark.sql._
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
object TestJob5 {
def main (args: Array[String]): Unit = {
val sparkSession = SparkSession
.builder()
.appName(this.getClass.getName.replace("$", ""))
.master("local")
.getOrCreate()
val sc = sparkSession.sparkContext
sc.setLogLevel("ERROR")
import sparkSession.sqlContext.implicits._
val rawDf = Seq(
("Moe", "Slap", 7.9, 118),
("Larry", "Spank", 8.0, 115),
("Curly", "Twist", 6.0, 113),
("Laurel", "Whimper", 7.53, 119),
("Hardy", "Laugh", 6.0, 118),
("Charley", "Ignore", 9.7, 115),
("Moe", "Spank", 6.8, 118),
("Larry", "Twist", 6.0, 115),
("Charley", "fall", 9.0, 115)
).toDF("name", "requisite", "funniness_of_requisite", "age")
rawDf.show(false)
rawDf.printSchema
val nameWindow = Window
.partitionBy("name")
val aggDf = rawDf
.withColumn("id", monotonically_increasing_id)
.withColumn("maxFun", max("funniness_of_requisite").over(nameWindow))
.withColumn("count", count("name").over(nameWindow))
.withColumn("minId", min("id").over(nameWindow))
.where(col("maxFun") === col("funniness_of_requisite") && col("minId") === col("id") )
.drop("maxFun")
.drop("minId")
.drop("id")
aggDf.printSchema
aggDf.show(false)
}
}
bear in mind that a group could potentially have more than 1 row with max age so you need to pick one by some logic. In the example I assume it doesn't matter so I just assign a unique number to choose