I am trying to merge (join) multiple data tables (obtained with fread from 5 csv files) to form a single data table. I get an error when I try to merge 5 data tables, but wo
If it's just those 5 datatables (where x is the same for all datatables), you could also use nested joins:
# set the key for each datatable to 'x'
setkey(DT1,x)
setkey(DT2,x)
setkey(DT3,x)
setkey(DT4,x)
setkey(DT5,x)
# the nested join
mergedDT1 <- DT1[DT2[DT3[DT4[DT5]]]]
Or as @Frank said in the comments:
DTlist <- list(DT1,DT2,DT3,DT4,DT5)
Reduce(function(X,Y) X[Y], DTlist)
which gives:
x y1 y2 y3 y4 y5
1: a 10 11 12 13 14
2: b 11 12 13 14 15
3: c 12 13 14 15 16
4: d 13 14 15 16 17
5: e 14 15 16 17 18
6: f 15 16 17 18 19
This gives the same result as:
mergedDT2 <- Reduce(function(...) merge(..., all = TRUE, by = "x"), list(DT1, DT2, DT3, DT4, DT5))
> identical(mergedDT1,mergedDT2)
[1] TRUE
When your x columns do not have the same values, a nested join will not give the desired solution:
DT1[DT2[DT3[DT4[DT5[DT6]]]]]
this gives:
x y1 y2 y3 y4 y5 y6
1: b 11 12 13 14 15 15
2: c 12 13 14 15 16 16
3: d 13 14 15 16 17 17
4: e 14 15 16 17 18 18
5: f 15 16 17 18 19 19
6: g NA NA NA NA NA 20
While:
Reduce(function(...) merge(..., all = TRUE, by = "x"), list(DT1, DT2, DT3, DT4, DT5, DT6))
gives:
x y1 y2 y3 y4 y5 y6
1: a 10 11 12 13 14 NA
2: b 11 12 13 14 15 15
3: c 12 13 14 15 16 16
4: d 13 14 15 16 17 17
5: e 14 15 16 17 18 18
6: f 15 16 17 18 19 19
7: g NA NA NA NA NA 20
Used data:
In order to make the code with Reduce work, I changed the names of the y columns.
DT1 <- data.table(x = letters[1:6], y1 = 10:15)
DT2 <- data.table(x = letters[1:6], y2 = 11:16)
DT3 <- data.table(x = letters[1:6], y3 = 12:17)
DT4 <- data.table(x = letters[1:6], y4 = 13:18)
DT5 <- data.table(x = letters[1:6], y5 = 14:19)
DT6 <- data.table(x = letters[2:7], y6 = 15:20, key="x")