how can I do this calculation:
library(ddply)
quantile(baseball$ab)
0% 25% 50% 75% 100%
0 25 131 435 705
by groups, say by \"
A slightly different approach using dplyr:
library(tidyverse)
baseball %>%
group_by(team) %>%
nest() %>%
mutate(
ret = map(data, ~quantile(.$ab, probs = c(0.25, 0.75))),
ret = invoke_map(tibble, ret)
) %>%
unnest(ret)
Here you can specify the needed quantiles in the probs argument.
The invoke_map call seems to be necessary, as quantile does not return a data frame; see this answer.
You can also put that all into a function:
get_quantiles <- function(.data, .var, .probs = c(0.25, 0.75), .group_vars = vars()) {
.var = deparse(substitute(.var))
return(
.data %>%
group_by_at(.group_vars) %>%
nest() %>%
mutate(
ret = map(data, ~quantile(.[[.var]], probs = .probs)),
ret = invoke_map(tibble, ret)
) %>%
unnest(ret, .drop = TRUE)
)
}
mtcars %>% get_quantiles(wt, .group_vars = vars(cyl))
A new approach would be to use group_modify() from dplyr. Then you'd call:
baseball %>%
group_by(team) %>%
group_modify(~{
quantile(.x$ab, probs = c(0.25, 0.75)) %>%
tibble::enframe()
}) %>%
spread(name, value)