A = np.array([[0.94366988, 0.86095311, 0.88896715, 0.93630641, 0.74075403, 0.52849619
, 0.03094677, 0.85707681, 0.88457925, 0.67279696, 0.26601085,
I think you need vectorized function np.where:
B = np.where(A > 0.5, 1, 0)
print (B)
[[1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0
1 0 0 1 0 1 0 1 0 0 1 1 0]]
B = np.where(A <= 0.5, 0, 1)
print (B)
[[1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 0
1 0 0 1 0 1 0 1 0 0 1 1 0]]
But better is holdenweb solution if need convert to 0 and 1 only.
np.where is better if need convert to another scalars like 5 and 10 or a and b:
C = np.where(A > 0.5, 5, 10)
print (C)
[[ 5 5 5 5 5 5 10 5 5 5 10 10 5 5 10 5 10 5 10 10 5 10 10 5
5 5 5 10 10 5 10 5 5 10 5 10 10 5 10 10 5 10 5 10 5 10 10 5
5 10]]
D = np.where(A > 0.5, 'a', 'b')
print (D)
[['a' 'a' 'a' 'a' 'a' 'a' 'b' 'a' 'a' 'a' 'b' 'b' 'a' 'a' 'b' 'a' 'b' 'a'
'b' 'b' 'a' 'b' 'b' 'a' 'a' 'a' 'a' 'b' 'b' 'a' 'b' 'a' 'a' 'b' 'a' 'b'
'b' 'a' 'b' 'b' 'a' 'b' 'a' 'b' 'a' 'b' 'b' 'a' 'a' 'b']]
Timings:
np.random.seed(223)
A = np.random.rand(1,1000000)
#jez
In [64]: %timeit np.where(A > 0.5, 1, 0)
100 loops, best of 3: 7.58 ms per loop
#holdenweb
In [65]: %timeit (A > 0.5).astype(int)
100 loops, best of 3: 3.47 ms per loop
#stamaimer
In [66]: %timeit element_wise_round(A)
1 loop, best of 3: 318 ms per loop