I have been going through a article(http://comonad.com/reader/2012/abstracting-with-applicatives/) and found the following snippet of code there:
newtype Com
First let's change the type variables' names to be unique:
(.) :: (a -> b) -> (r -> a) -> (r -> b)
fmap :: Functor f => (c -> d) -> f c -> f d
fmap :: Functor g => (x -> y) -> g x -> g y
Now the first parameter to . has type a -> b and we supply an argument of type (c -> d) -> (f c -> f d), so a is c -> d and b is f c -> f d. So so far we have:
(.) :: Functor f => -- Left operand
((c -> d) -> (f c -> f d)) ->
-- Right operand
(r -> (c -> d)) ->
-- Result
(r -> (f c -> f d))
The second parameter to . has type r -> a a.k.a. r -> (c -> d) and the argument we give has type (x -> y) -> (g x -> g y), so r becomes x -> y, c becomes g x and d becomes g y. So now we have:
(.) :: (Functor f, Functor g) => -- Left operand
((g x -> g y) -> (f (g x) -> f (g y))) ->
-- Right operand
((x -> y) -> (g x -> g y)) ->
-- Result
(x -> y) -> f (g x) -> f (g y)
fmap.fmap :: (Functor f, Functor g) => (x -> y) -> f (g x) -> f (g y)