If I have a list like this:
results=[-14.82381293, -0.29423447, -13.56067979, -1.6288903, -0.31632439,
0.53459687, -1.34069996, -1.61042692, -4.032
Without imports, I would use the following python3 script:
#!/usr/bin/env python3
def createData():
data1=[12,54,60,3,15,6,36]
data2=[1,2,3,4,5]
data3=[100,30000,1567,3467,20000,23457,400,1,15]
dataset=[]
dataset.append(data1)
dataset.append(data2)
dataset.append(data3)
return dataset
def calculateMean(data):
means=[]
# one list of the nested list
for oneDataset in data:
sum=0
mean=0
# one datapoint in one inner list
for number in oneDataset:
# summing up
sum+=number
# mean for one inner list
mean=sum/len(oneDataset)
# adding a tuples of the original data and their mean to
# a list of tuples
item=(oneDataset, mean)
means.append(item)
return means
# to do: substract mean from each element and square the result
# sum up the square results and divide by number of elements
def calculateVariance(meanData):
variances=[]
# meanData is the list of tuples
# pair is one tuple
for pair in meanData:
# pair[0] is the original data
interResult=0
squareSum=0
for element in pair[0]:
interResult=(element-pair[1])**2
squareSum+=interResult
variance=squareSum/len(pair[0])
variances.append((pair[0], pair[1], variance))
return variances
def main():
my_data=createData()
my_means=calculateMean(my_data)
my_variances=calculateVariance(my_means)
print(my_variances)
if __name__ == "__main__":
main()
here you get a print of the original data, their mean and the variance. I know this approach covers a list of several datasets, yet I think you can adapt it quickly for your purpose ;)