A^2+B^2+C^2+D^2 = N Given an integer N, print out all possible combinations of integer values of ABCD which solve the equation.
nebffa has a great answer. one suggestion:
step 3a: max_b = min(a, floor(square_root(n - a^2))) // since b <= a
max_c and max_d can be improved in the same way too.
Here is another try:
1. generate array S: {0, 1, 2^2, 3^2,.... nr^2} where nr = floor(square_root(N)).
now the problem is to find 4 numbers from the array that sum(a, b,c,d) = N;
2. according to neffa's post (step 1a & 1b), a (which is the largest among all 4 numbers) is between [nr/2 .. nr].
We can loop a from nr down to nr/2 and calculate r = N - S[a]; now the question is to find 3 numbers from S the sum(b,c,d) = r = N -S[a];
here is code:
nr = square_root(N);
S = {0, 1, 2^2, 3^2, 4^2,.... nr^2};
for (a = nr; a >= nr/2; a--)
{
r = N - S[a];
// it is now a 3SUM problem
for(b = a; b >= 0; b--)
{
r1 = r - S[b];
if (r1 < 0)
continue;
if (r1 > N/2) // because (a^2 + b^2) >= (c^2 + d^2)
break;
for (c = 0, d = b; c <= d;)
{
sum = S[c] + S[d];
if (sum == r1)
{
print a, b, c, d;
c++; d--;
}
else if (sum < r1)
c++;
else
d--;
}
}
}
runtime is O(sqare_root(N)^3).
Here is the test result running java on my VM (time in milliseconds, result# is total num of valid combination, time 1 with printout, time2 without printout):
N result# time1 time2
----------- -------- -------- -----------
1,000,000 1302 859 281
10,000,000 6262 16109 7938
100,000,000 30912 442469 344359