I have a line and a triangle somewhere in 3D space. In other words, I have 3 points ([x,y,z] each) for the triangle, and two points (also [x,y,z]) for the line.
I ne
@BrunoLevi: your algorithm does not seem to work, see the following python implementation:
def intersect_line_triangle(q1,q2,p1,p2,p3):
def signed_tetra_volume(a,b,c,d):
return np.sign(np.dot(np.cross(b-a,c-a),d-a)/6.0)
s1 = signed_tetra_volume(q1,p1,p2,p3)
s2 = signed_tetra_volume(q2,p1,p2,p3)
if s1 != s2:
s3 = signed_tetra_volume(q1,q2,p1,p2)
s4 = signed_tetra_volume(q1,q2,p2,p3)
s5 = signed_tetra_volume(q1,q2,p3,p1)
if s3 == s4 and s4 == s5:
n = np.cross(p2-p1,p3-p1)
t = -np.dot(q1,n-p1) / np.dot(q1,q2-q1)
return q1 + t * (q2-q1)
return None
My test code is:
q0 = np.array([0.0,0.0,1.0])
q1 = np.array([0.0,0.0,-1.0])
p0 = np.array([-1.0,-1.0,0.0])
p1 = np.array([1.0,-1.0,0.0])
p2 = np.array([0.0,1.0,0.0])
print(intersect_line_triangle(q0,q1,p0,p1,p2))
gives:
[ 0. 0. -3.]
instead of the expected
[ 0. 0. 0.]
looking at the line
t = np.dot(q1,n-p1) / np.dot(q1,q2-q1)
Subtracting p1 from the normal doesn't make sense to me, you want to project from q1 onto the plane of the triangle, so you need to project along the normal, with a distance that is proportional to the ratio of the distance from q1 to the plane and q1-q2 along the normal, right?
The following code fixes this:
n = np.cross(p2-p1,p3-p1)
t = np.dot(p1-q1,n) / np.dot(q2-q1,n)
return q1 + t * (q2-q1)