How do I convert an RDD with a SparseVector Column to a DataFrame with a column as Vector

前端 未结 3 1426
别跟我提以往
别跟我提以往 2020-12-28 19:55

I have an RDD with a tuple of values (String, SparseVector) and I want to create a DataFrame using the RDD. To get a (labe

3条回答
  •  轮回少年
    2020-12-28 20:12

    While @zero323 answer https://stackoverflow.com/a/32745924/1333621 makes sense, and I wish it worked for me - the rdd underlying the dataframe, sqlContext.createDataFrame(temp_rdd, schema), the still contained SparseVectors types I had to do the following to convert to DenseVector types - if someone has a shorter/better way I want to know

    temp_rdd = sc.parallelize([
        (0.0, SparseVector(4, {1: 1.0, 3: 5.5})),
        (1.0, SparseVector(4, {0: -1.0, 2: 0.5}))])
    
    schema = StructType([
        StructField("label", DoubleType(), True),
        StructField("features", VectorUDT(), True)
    ])
    
    temp_rdd.toDF(schema).printSchema()
    df_w_ftr = temp_rdd.toDF(schema)
    
    print 'original convertion method: ',df_w_ftr.take(5)
    print('\n')
    temp_rdd_dense = temp_rdd.map(lambda x: Row(label=x[0],features=DenseVector(x[1].toArray())))
    print type(temp_rdd_dense), type(temp_rdd)
    print 'using map and toArray:', temp_rdd_dense.take(5)
    
    temp_rdd_dense.toDF().show()
    
    root
     |-- label: double (nullable = true)
     |-- features: vector (nullable = true)
    
    original convertion method:  [Row(label=0.0, features=SparseVector(4, {1: 1.0, 3: 5.5})), Row(label=1.0, features=SparseVector(4, {0: -1.0, 2: 0.5}))]
    
    
     
    using map and toArray: [Row(features=DenseVector([0.0, 1.0, 0.0, 5.5]), label=0.0), Row(features=DenseVector([-1.0, 0.0, 0.5, 0.0]), label=1.0)]
    
    +------------------+-----+
    |          features|label|
    +------------------+-----+
    | [0.0,1.0,0.0,5.5]|  0.0|
    |[-1.0,0.0,0.5,0.0]|  1.0|
    +------------------+-----+
    

提交回复
热议问题