I am using a multi-dimensional SVM classifier (SVM.NET, a wrapper for libSVM) to classify a set of features.
Given an SVM model, is it possible to incorporate new tr
Online and incremental although similar but differ slightly. In online, its generally a single pass(epoch=1) or number of epochs could be configured. Where as, incremental would mean that you already have a model; no matter how it is built, but then model can be mutable by new examples. Also, a combination of online and incremental is often what is required.
Here is a list of tools with some remarks on the online and/or incremental SVM : https://stats.stackexchange.com/questions/30834/is-it-possible-to-append-training-data-to-existing-svm-models/51989#51989