How to extract sklearn decision tree rules to pandas boolean conditions?

前端 未结 3 1559
栀梦
栀梦 2020-12-28 17:16

There are so many posts like this about how to extract sklearn decision tree rules but I could not find any about using pandas.

Take this data and model for example,

3条回答
  •  醉酒成梦
    2020-12-28 17:27

    First of all let's use the scikit documentation on decision tree structure to get information about the tree that was constructed :

    n_nodes = clf.tree_.node_count
    children_left = clf.tree_.children_left
    children_right = clf.tree_.children_right
    feature = clf.tree_.feature
    threshold = clf.tree_.threshold
    

    We then define two recursive functions. The first one will find the path from the tree's root to create a specific node (all the leaves in our case). The second one will write the specific rules used to create a node using its creation path :

    def find_path(node_numb, path, x):
            path.append(node_numb)
            if node_numb == x:
                return True
            left = False
            right = False
            if (children_left[node_numb] !=-1):
                left = find_path(children_left[node_numb], path, x)
            if (children_right[node_numb] !=-1):
                right = find_path(children_right[node_numb], path, x)
            if left or right :
                return True
            path.remove(node_numb)
            return False
    
    
    def get_rule(path, column_names):
        mask = ''
        for index, node in enumerate(path):
            #We check if we are not in the leaf
            if index!=len(path)-1:
                # Do we go under or over the threshold ?
                if (children_left[node] == path[index+1]):
                    mask += "(df['{}']<= {}) \t ".format(column_names[feature[node]], threshold[node])
                else:
                    mask += "(df['{}']> {}) \t ".format(column_names[feature[node]], threshold[node])
        # We insert the & at the right places
        mask = mask.replace("\t", "&", mask.count("\t") - 1)
        mask = mask.replace("\t", "")
        return mask
    

    Finally, we use those two functions to first store the creation path of each leaf. And then to store the rules used to create each leaf :

    # Leaves
    leave_id = clf.apply(X_test)
    
    paths ={}
    for leaf in np.unique(leave_id):
        path_leaf = []
        find_path(0, path_leaf, leaf)
        paths[leaf] = np.unique(np.sort(path_leaf))
    
    rules = {}
    for key in paths:
        rules[key] = get_rule(paths[key], pima.columns)
    

    With the data you gave the output is :

    rules =
    {3: "(df['insulin']<= 127.5) & (df['bp']<= 26.450000762939453) & (df['bp']<= 9.100000381469727)  ",
     4: "(df['insulin']<= 127.5) & (df['bp']<= 26.450000762939453) & (df['bp']> 9.100000381469727)  ",
     6: "(df['insulin']<= 127.5) & (df['bp']> 26.450000762939453) & (df['skin']<= 27.5)  ",
     7: "(df['insulin']<= 127.5) & (df['bp']> 26.450000762939453) & (df['skin']> 27.5)  ",
     10: "(df['insulin']> 127.5) & (df['bp']<= 28.149999618530273) & (df['insulin']<= 145.5)  ",
     11: "(df['insulin']> 127.5) & (df['bp']<= 28.149999618530273) & (df['insulin']> 145.5)  ",
     13: "(df['insulin']> 127.5) & (df['bp']> 28.149999618530273) & (df['insulin']<= 158.5)  ",
     14: "(df['insulin']> 127.5) & (df['bp']> 28.149999618530273) & (df['insulin']> 158.5)  "}
    

    Since the rules are strings, you can't directly call them using df[rules[3]], you have to use the eval function like so df[eval(rules[3])]

提交回复
热议问题