Im deploying a keras model and sending the test data to the model via a flask api. I have two files:
First: My Flask App:
# Let\'s startup the Flask
Flask uses multiple threads. The problem you are running into is because the tensorflow model is not loaded and used in the same thread. One workaround is to force tensorflow to use the gloabl default graph .
Add this after you load your model
global graph
graph = tf.get_default_graph()
And inside your predict
with graph.as_default():
y_hat = keras_model_loaded.predict(predict_request, batch_size=1, verbose=1)