I have 2 DataFrames df1 and df2 with the same column names [\'a\',\'b\',\'c\'] and indexed by dates. The date index can have similar values. I would like to create a DataFra
You can use concat:
In [11]: pd.concat([df1['c'], df2['c']], axis=1, keys=['df1', 'df2'])
Out[11]:
df1 df2
2014-01-01 NaN -0.978535
2014-01-02 -0.106510 -0.519239
2014-01-03 -0.846100 -0.313153
2014-01-04 -0.014253 -1.040702
2014-01-05 0.315156 -0.329967
2014-01-06 -0.510577 -0.940901
2014-01-07 NaN -0.024608
2014-01-08 NaN -1.791899
[8 rows x 2 columns]
The axis argument determines the way the DataFrames are stacked:
df1 = pd.DataFrame([1, 2, 3])
df2 = pd.DataFrame(['a', 'b', 'c'])
pd.concat([df1, df2], axis=0)
0
0 1
1 2
2 3
0 a
1 b
2 c
pd.concat([df1, df2], axis=1)
0 0
0 1 a
1 2 b
2 3 c