Generate correlated data in Python (3.3)

前端 未结 2 1307
臣服心动
臣服心动 2020-12-28 09:51

In R there is a function (cm.rnorm.cor, from package CreditMetrics), that takes the amount of samples, the amount of variables, and a correlation m

2条回答
  •  甜味超标
    2020-12-28 10:50

    numpy.random.multivariate_normal is the function that you want.

    Example:

    import numpy as np
    import matplotlib.pyplot as plt
    
    
    num_samples = 400
    
    # The desired mean values of the sample.
    mu = np.array([5.0, 0.0, 10.0])
    
    # The desired covariance matrix.
    r = np.array([
            [  3.40, -2.75, -2.00],
            [ -2.75,  5.50,  1.50],
            [ -2.00,  1.50,  1.25]
        ])
    
    # Generate the random samples.
    y = np.random.multivariate_normal(mu, r, size=num_samples)
    
    
    # Plot various projections of the samples.
    plt.subplot(2,2,1)
    plt.plot(y[:,0], y[:,1], 'b.')
    plt.plot(mu[0], mu[1], 'ro')
    plt.ylabel('y[1]')
    plt.axis('equal')
    plt.grid(True)
    
    plt.subplot(2,2,3)
    plt.plot(y[:,0], y[:,2], 'b.')
    plt.plot(mu[0], mu[2], 'ro')
    plt.xlabel('y[0]')
    plt.ylabel('y[2]')
    plt.axis('equal')
    plt.grid(True)
    
    plt.subplot(2,2,4)
    plt.plot(y[:,1], y[:,2], 'b.')
    plt.plot(mu[1], mu[2], 'ro')
    plt.xlabel('y[1]')
    plt.axis('equal')
    plt.grid(True)
    
    plt.show()
    

    Result:

    enter image description here

    See also CorrelatedRandomSamples in the SciPy Cookbook.

提交回复
热议问题