I\'m calculating intersection of 2 sets of sorted numbers in a time-critical part of my application. This calculation is the biggest bottleneck of the whole application so I
I was using Jon's approach but needed to execute this intersect hundreds of thousands of times for a bulk operation on very large sets and needed more performance. The case I was running in to was heavily imbalanced sizes of the lists (eg 5 and 80,000) and wanted to avoid iterating the entire large list.
I found that detecting the imbalance and changing to an alternate algorithm gave me huge benifits over specific data sets:
public static IEnumerable IntersectSorted(this List sequence1,
List sequence2,
IComparer comparer)
{
List smallList = null;
List largeList = null;
if (sequence1.Count() < Math.Log(sequence2.Count(), 2))
{
smallList = sequence1;
largeList = sequence2;
}
else if (sequence2.Count() < Math.Log(sequence1.Count(), 2))
{
smallList = sequence2;
largeList = sequence1;
}
if (smallList != null)
{
foreach (var item in smallList)
{
if (largeList.BinarySearch(item, comparer) >= 0)
{
yield return item;
}
}
}
else
{
//Use Jon's method
}
}
I am still unsure about the point at which you break even, need to do some more testing