I have run the distributed mnist example: https://github.com/tensorflow/tensorflow/blob/r0.12/tensorflow/tools/dist_test/python/mnist_replica.py
Though I have set th
I also used Tensorlfow r0.12 and I didn't think there is any issue for saving and restoring model. The following is a simple code that you can have a try:
import tensorflow as tf
# Create some variables.
v1 = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="v1")
v2 = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="v2")
# Add an op to initialize the variables.
init_op = tf.global_variables_initializer()
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Later, launch the model, initialize the variables, do some work, save the
# variables to disk.
with tf.Session() as sess:
sess.run(init_op)
# Do some work with the model.
# Save the variables to disk.
save_path = saver.save(sess, "/tmp/model.ckpt")
print("Model saved in file: %s" % save_path)
# Later, launch the model, use the saver to restore variables from disk, and
# do some work with the model.
with tf.Session() as sess:
# Restore variables from disk.
saver.restore(sess, "/tmp/model.ckpt")
print("Model restored.")
# Do some work with the model
although in r0.12, the checkpoint is stored in multiple files, you can restore it by using the common prefix, which is 'model.ckpt' in your case.