Eigen: Is there an inbuilt way to calculate sample covariance

前端 未结 2 532
情歌与酒
情歌与酒 2020-12-25 15:30

I am using the Eigen library in C++: I am currently calculating the covariance matrix myself as follows:

Eigen::MatrixXd covariance_matrix = Eigen::MatrixXd:         


        
2条回答
  •  夕颜
    夕颜 (楼主)
    2020-12-25 15:59

    Using Eigen expressions will leverage SIMD and cache optimized algorithms, so yes it should definitely be faster, and in any case, much simpler to write:

    MatrixXd centered = mat.rowwise() - mat.colwise().mean();
    MatrixXd cov = (centered.adjoint() * centered) / double(mat.rows() - 1);
    

    Moreover, assuming "data" is a typedef for a double[21], then you can use the Map<> feature to view your std::vector as an Eigen object:

    Map > mat(&(all_data[0][0], all_data.size(), 21);
    

提交回复
热议问题