I\'ve tried several methods of loading the google news word2vec vectors (https://code.google.com/archive/p/word2vec/):
en_nlp = spacy.load(\'en\',vector=Fals
For spacy 1.x, load Google news vectors into gensim and convert to a new format (each line in .txt contains a single vector: string, vec):
from gensim.models.word2vec import Word2Vec
from gensim.models import KeyedVectors
model = KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True)
model.wv.save_word2vec_format('googlenews.txt')
Remove the first line of the .txt:
tail -n +2 googlenews.txt > googlenews.new && mv -f googlenews.new googlenews.txt
Compress the txt as .bz2:
bzip2 googlenews.txt
Create a SpaCy compatible binary file:
spacy.vocab.write_binary_vectors('googlenews.txt.bz2','googlenews.bin')
Move the googlenews.bin to /lib/python/site-packages/spacy/data/en_google-1.0.0/vocab/googlenews.bin of your python environment.
Then load the wordvectors:
import spacy
nlp = spacy.load('en',vectors='en_google')
or load them after later:
nlp.vocab.load_vectors_from_bin_loc('googlenews.bin')