Here is snipped of code with iterative approach instead of recursion.
Output example:
Enter n: 5
F(5) = 5 ... computed in 1 milliseconds
Enter n: 50
F(50) = 12586269025 ... computed in 0 milliseconds
Enter n: 500
F(500) = ...4125 ... computed in 2 milliseconds
Enter n: 500
F(500) = ...4125 ... computed in 0 milliseconds
Enter n: 500000
F(500000) = ...453125 ... computed in 5,718 milliseconds
Enter n: 500000
F(500000) = ...453125 ... computed in 0 milliseconds
Some pieces of results are omitted with ... for better view.
Code snippet:
public class CachedFibonacci {
private static Map previousValuesHolder;
static {
previousValuesHolder = new HashMap<>();
previousValuesHolder.put(BigDecimal.ZERO, BigDecimal.ZERO);
previousValuesHolder.put(BigDecimal.ONE, BigDecimal.ONE);
}
public static BigDecimal getFibonacciOf(long number) {
if (0 == number) {
return BigDecimal.ZERO;
} else if (1 == number) {
return BigDecimal.ONE;
} else {
if (previousValuesHolder.containsKey(BigDecimal.valueOf(number))) {
return previousValuesHolder.get(BigDecimal.valueOf(number));
} else {
BigDecimal olderValue = BigDecimal.ONE,
oldValue = BigDecimal.ONE,
newValue = BigDecimal.ONE;
for (int i = 3; i <= number; i++) {
newValue = oldValue.add(olderValue);
olderValue = oldValue;
oldValue = newValue;
}
previousValuesHolder.put(BigDecimal.valueOf(number), newValue);
return newValue;
}
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
while (true) {
System.out.print("Enter n: ");
long inputNumber = scanner.nextLong();
if (inputNumber >= 0) {
long beginTime = System.currentTimeMillis();
BigDecimal fibo = getFibonacciOf(inputNumber);
long endTime = System.currentTimeMillis();
long delta = endTime - beginTime;
System.out.printf("F(%d) = %.0f ... computed in %,d milliseconds\n", inputNumber, fibo, delta);
} else {
System.err.println("You must enter number > 0");
System.out.println("try, enter number again, please:");
break;
}
}
}
}
This approach runs much faster than the recursive version.
In such a situation, the iterative solution tends to be a bit faster, because each
recursive method call takes a certain amount of processor time. In principle, it is
possible for a smart compiler to avoid recursive method calls if they follow simple
patterns, but most compilers don’t do that. From that point of view, an iterative
solution is preferable.