I have a dataframe of taxi data with two columns that looks like this:
Neighborhood Borough Time
Midtown Manhattan X
Melrose B
I think you can use nlargest - you can change 1 to 5:
s = df['Neighborhood'].groupby(df['Borough']).value_counts()
print s
Borough
Bronx Melrose 7
Manhattan Midtown 12
Lincoln Square 2
Staten Island Grant City 11
dtype: int64
print s.groupby(level=[0,1]).nlargest(1)
Bronx Bronx Melrose 7
Manhattan Manhattan Midtown 12
Staten Island Staten Island Grant City 11
dtype: int64
additional columns were getting created, specified level info